Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047528

RESUMO

Nitrobindins (Nbs) are all-ß-barrel heme proteins spanning from bacteria to Homo sapiens. They inactivate reactive nitrogen species by sequestering NO, converting NO to HNO2, and promoting peroxynitrite isomerization to NO3-. Here, the nitrite reductase activity of Nb(II) from Mycobacterium tuberculosis (Mt-Nb(II)), Arabidopsis thaliana (At-Nb(II)), Danio rerio (Dr-Nb(II)), and Homo sapiens (Hs-Nb(II)) is reported. This activity is crucial for the in vivo production of NO, and thus for the regulation of blood pressure, being of the utmost importance for the blood supply to poorly oxygenated tissues, such as the eye retina. At pH 7.3 and 20.0 °C, the values of the second-order rate constants (i.e., kon) for the reduction of NO2- to NO and the concomitant formation of nitrosylated Mt-Nb(II), At-Nb(II), Dr-Nb(II), and Hs-Nb(II) (Nb(II)-NO) were 7.6 M-1 s-1, 9.3 M-1 s-1, 1.4 × 101 M-1 s-1, and 5.8 M-1 s-1, respectively. The values of kon increased linearly with decreasing pH, thus indicating that the NO2--based conversion of Nb(II) to Nb(II)-NO requires the involvement of one proton. These results represent the first evidence for the NO2 reductase activity of Nbs(II), strongly supporting the view that Nbs are involved in NO metabolism. Interestingly, the nitrite reductase reactivity of all-ß-barrel Nbs and of all-α-helical globins (e.g., myoglobin) was very similar despite the very different three-dimensional fold; however, differences between all-α-helical globins and all-ß-barrel Nbs suggest that nitrite reductase activity appears to be controlled by distal steric barriers, even though a more complex regulatory mechanism can be also envisaged.


Assuntos
Arabidopsis , Dióxido de Nitrogênio , Humanos , Heme/metabolismo , Globinas/metabolismo , Nitrito Redutases/metabolismo , Mioglobina/metabolismo , Arabidopsis/metabolismo , Oxirredução , Cinética , Nitritos/metabolismo
2.
Pharmacol Ther ; 241: 108329, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36526014

RESUMO

The immunoproteasome is a specialized form of proteasome equipped with modified catalytic subunits that was initially discovered to play a pivotal role in MHC class I antigen processing and immune system modulation. However, over the last years, this proteolytic complex has been uncovered to serve additional functions unrelated to antigen presentation. Accordingly, it has been proposed that immunoproteasome synergizes with canonical proteasome in different cell types of the nervous system, regulating neurotransmission, metabolic pathways and adaptation of the cells to redox or inflammatory insults. Hence, studying the alterations of immunoproteasome expression and activity is gaining research interest to define the dynamics of neuroinflammation as well as the early and late molecular events that are likely involved in the pathogenesis of a variety of neurological disorders. Furthermore, these novel functions foster the perspective of immunoproteasome as a potential therapeutic target for neurodegeneration. In this review, we provide a brain and retina-wide overview, trying to correlate present knowledge on structure-function relationships of immunoproteasome with the variety of observed neuro-modulatory functions.


Assuntos
Apresentação de Antígeno , Complexo de Endopeptidases do Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Transmissão Sináptica , Encéfalo/metabolismo
3.
Biomolecules ; 12(6)2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35740865

RESUMO

Cationic porphyrins exhibit an amazing variety of binding modes and inhibition mechanisms of 20S proteasome. Depending on the spatial distribution of their electrostatic charges, they can occupy different sites on α rings of 20S proteasome by exploiting the structural code responsible for the interaction with regulatory proteins. Indeed, they can act as competitive or allosteric inhibitors by binding at the substrate gate or at the grooves between the α subunits, respectively. Moreover, the substitution of a charged moiety in the peripheral arm with a hydrophobic moiety revealed a "new" 20S functional state with higher substrate affinity and catalytic efficiency. In the present study, we expand our structure-activity relationship (SAR) analysis in order to further explore the potential of this versatile class of 20S modulators. Therefore, we have extended the study to additional macrocyclic compounds, displaying different structural features, comparing their interaction behavior on the 20S proteasome with previously investigated compounds. In particular, in order to evaluate how the introduction of a peptidic chain can affect the affinity and the interacting mechanism of porphyrins, we investigate the MTPyApi, a porphyrin derivatized with an Arg-Pro-rich antimicrobial peptide. Moreover, to unveil the role played by the porphyrin core, this was replaced with a corrole scaffold, a "contracted" version of the tetrapyrrolic ring due to the lack of a methine bridge. The analysis has been undertaken by means of integrated kinetic, Nuclear Magnetic Resonance, and computational studies. Finally, in order to assess a potential pharmacological significance of this type of investigation, a preliminary attempt has been performed to evaluate the biological effect of these molecules on MCF7 breast cancer cells in dark conditions, envisaging that porphyrins may indeed represent a powerful tool for the modulation of cellular proteostasis.


Assuntos
Porfirinas , Complexo de Endopeptidases do Proteassoma , Cinética , Porfirinas/química , Porfirinas/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Proteólise , Proteostase
4.
J Biol Inorg Chem ; 27(4-5): 443-453, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35543759

RESUMO

Hemoglobin and myoglobin are generally taken as molecular models of all-α-helical heme-proteins. On the other hand, nitrophorins and nitrobindins (Nb), which are arranged in 8 and 10 ß-strands, respectively, represent the molecular models of all-ß-barrel heme-proteins. Here, kinetics of the hydroxylamine- (HA-) mediated oxidation of ferrous Mycobacterium tuberculosis, Arabidopsis thaliana, and Homo sapiens nitrobindins (Mt-Nb(II), At-Nb(II), and Hs-Nb(II), respectively), at pH 7.0 and 20.0 °C, are reported. Of note, HA displays antibacterial properties and is a good candidate for the treatment and/or prevention of reactive nitrogen species- (RNS-) linked aging-related pathologies, such as macular degeneration. Under anaerobic conditions, mixing the Mt-Nb(II), At-Nb(II), and Hs-Nb(II) solutions with the HA solutions brings about absorbance spectral changes reflecting the formation of the ferric derivative (i.e., Mt-Nb(III), At-Nb(III), and Hs-Nb(III), respectively). Values of the second order rate constant for the HA-mediated oxidation of Mt-Nb(II), At-Nb(II), and Hs-Nb(II) are 1.1 × 104 M-1 s-1, 6.5 × 104 M-1 s-1, and 2.2 × 104 M-1 s-1, respectively. Moreover, the HA:Nb(II) stoichiometry is 1:2 as reported for ferrous deoxygenated and carbonylated all-α-helical heme-proteins. A comparative look of the HA reduction kinetics by several ferrous heme-proteins suggests that an important role might be played by residues (such as His or Tyr) in the proximity of the heme-Fe atom either coordinating it or not. In this respect, Nbs seem to exploit somewhat different structural aspects, indicating that redox mechanisms for the heme-Fe(II)-to-heme-Fe(III) conversion might differ between all-α-helical and all-ß-barrel heme-proteins.


Assuntos
Compostos Férricos , Heme , Arabidopsis , Heme/metabolismo , Humanos , Hidroxilamina , Hidroxilaminas , Ferro , Cinética , Mycobacterium tuberculosis , Mioglobina , Oxirredução
5.
Cancers (Basel) ; 13(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638337

RESUMO

Immunoproteasome is a noncanonical form of proteasome with enzymological properties optimized for the generation of antigenic peptides presented in complex with class I MHC molecules. This enzymatic property makes the modulation of its activity a promising area of research. Nevertheless, immunotherapy has emerged as a front-line treatment of advanced/metastatic tumors providing outstanding improvement of life expectancy, even though not all patients achieve a long-lasting clinical benefit. To enhance the efficacy of the currently available immunotherapies and enable the development of new strategies, a broader knowledge of the dynamics of antigen repertoire processing by cancer cells is needed. Therefore, a better understanding of the role of immunoproteasome in antigen processing and of the therapeutic implication of its modulation is mandatory. Studies on the potential crosstalk between proteasome modulators and immune checkpoint inhibitors could provide novel perspectives and an unexplored treatment option for a variety of cancers.

6.
Chem Phys Lipids ; 236: 105072, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33675779

RESUMO

Alzheimer's Diseases (AD) is characterized by the accumulation of amyloid deposits of Aß peptide in the brain. Besides genetic background, the presence of other diseases and an unhealthy lifestyle are known risk factors for AD development. Albeit accumulating clinical evidence suggests that an impaired lipid metabolism is related to Aß deposition, mechanistic insights on the link between amyloid fibril formation/clearance and aberrant lipid interactions are still unavailable. Recently, many studies have described the key role played by membrane bound Aß assemblies in neurotoxicity. Moreover, it has been suggested that a derangement of the ubiquitin proteasome pathway and autophagy is significantly correlated with toxic Aß aggregation and dysregulation of lipid levels. Thus, studies focusing on the role played by lipids in Aß aggregation and proteostasis could represent a promising area of investigation for the design of valuable treatments. In this review we examine current knowledge concerning the effects of lipids in Aß aggregation and degradation processes, focusing on the therapeutic opportunities that a comprehensive understanding of all biophysical, biochemical, and biological processes involved may disclose.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Lipídeos/química , Peptídeos beta-Amiloides/química , Animais , Homeostase , Humanos , Agregados Proteicos , Fatores de Risco
7.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003385

RESUMO

The present study provides new evidence that cationic porphyrins may be considered as tunable platforms to interfere with the structural "key code" present on the 20S proteasome α-rings and, by consequence, with its catalytic activity. Here, we describe the functional and conformational effects on the 20S proteasome induced by the cooperative binding of the tri-cationic 5-(phenyl)-10,15,20-(tri N-methyl-4-pyridyl) porphyrin (Tris-T4). Our integrated kinetic, NMR, and in silico analysis allowed us to disclose a complex effect on the 20S catalytic activity depending on substrate/porphyrin concentration. The analysis of the kinetic data shows that Tris-T4 shifts the relative populations of the multiple interconverting 20S proteasome conformations leading to an increase in substrate hydrolysis by an allosteric pathway. Based on our Tris-T4/h20S interaction model, Tris-T4 is able to affect gating dynamics and substrate hydrolysis by binding to an array of negatively charged and hydrophobic residues present on the protein surface involved in the 20S molecular activation by the regulatory proteins (RPs). Accordingly, despite the fact that Tris-T4 also binds to the α3ΔN mutant, allosteric modulation is not observed since the molecular mechanism connecting gate dynamics with substrate hydrolysis is impaired. We envisage that the dynamic view of the 20S conformational equilibria, activated through cooperative Tris-T4 binding, may work as a simplified model for a better understanding of the intricate network of 20S conformational/functional states that may be mobilized by exogenous ligands, paving the way for the development of a new generation of proteasome allosteric modulators.


Assuntos
Regulação Alostérica/genética , Cátions/metabolismo , Porfirinas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Catálise , Cátions/farmacologia , Citoplasma/genética , Humanos , Cinética , Ressonância Magnética Nuclear Biomolecular , Porfirinas/farmacologia , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica/efeitos dos fármacos
8.
J Biol Inorg Chem ; 25(3): 351-360, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32146510

RESUMO

Haptoglobin (Hp) counterbalances the adverse effects of extra-erythrocytic hemoglobin (Hb) trapping the αß dimers of Hb. In turn, the Hp:Hb complexes display heme-based reactivity. Here, the kinetics of cyanide and carbon monoxide dissociation from ferrous-ligated Hp:Hb complexes are reported at pH 7.0 and 20.0 °C. Cyanide dissociation from Hp1-1:Hb(II)-CN- and Hp2-2:Hb-CN- has been followed upon the dithionite-mediated conversion of ferric to ferrous-ligated Hp:Hb complexes. Values of kon for the dithionite-mediated reduction of Hp1-1:Hb(III)-CN- and Hp2-2:Hb(III)-CN- are (7.3 ± 1.1) × 106 M-1 s-1 and (6.2 ± 1.0) × 106 M-1 s-1, respectively. Values of the first-order rate constant (i.e., h) for cyanide dissociation from Hp1-1:Hb(II)-CN- and Hp2-2:Hb(II)-CN- are (1.2 ± 0.2) × 10-1 s-1 and (1.3 ± 0.2) × 10-1 s-1, respectively. CO dissociation from Hp:Hb(II)-CO complexes has been followed by replacing CO with NO. Values of the first-order rate constant (i.e., l) for CO dissociation from Hp1-1:Hb(II)-CO are (1.4 ± 0.2) × 10-2 s-1 and (6.2 ± 0.8) × 10-3 s-1, and those from Hp2-2:Hb(II)-CO are (1.3 ± 0.2) × 10-2 s-1 and (7.3 ± 0.9) × 10-3 s-1. Values of kon, h, and l correspond to those reported for the R-state of tetrameric Hb and isolated α and ß chains. This highlights the view that the conformation of the Hb αß-dimers bound to Hp1-1 and Hp2-2 matches that of the R-state of the Hb tetramer. Furthermore, unlike ferric Hb(III), ligated ferrous Hb(II) does not show an assembly-linked structural change.


Assuntos
Monóxido de Carbono/química , Cianetos/química , Compostos Ferrosos/química , Haptoglobinas/química , Hemoglobinas/química , Humanos , Cinética
9.
J Biol Inorg Chem ; 25(3): 361-370, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32172452

RESUMO

Myoglobin (Mb), generally taken as the molecular model of monomeric globular heme-proteins, is devoted: (i) to act as an intracellular oxygen reservoir, (ii) to transport oxygen from the sarcolemma to the mitochondria of vertebrate heart and red muscle cells, and (iii) to act as a scavenger of nitrogen and oxygen reactive species protecting mitochondrial respiration. Here, the first evidence of ·NO inhibition of ferric Mb- (Mb(III)) mediated detoxification of peroxynitrite is reported, at pH 7.2 and 20.0 °C. ·NO binds to Mb(III) with a simple equilibrium; the value of the second-order rate constant for Mb(III) nitrosylation (i.e., ·NOkon) is (6.8 ± 0.7) × 104 M-1 s-1 and the value of the first-order rate constant for Mb(III)-NO denitrosylation (i.e., ·NOkoff) is 3.1 ± 0.3 s-1. The calculated value of the dissociation equilibrium constant for Mb(III)-NO complex formation (i.e., ·NOkoff/·NOkon = (4.6 ± 0.7) × 10-5 M) is virtually the same as that directly measured (i.e., ·NOK = (3.8 ± 0.5) × 10-5 M). In the absence of ·NO, Mb(III) catalyzes the conversion of peroxynitrite to NO3-, the value of the second-order rate constant (i.e., Pkon) being (1.9 ± 0.2) × 104 M-1 s-1. However, in the presence of ·NO, Mb(III)-mediated detoxification of peroxynitrite is only partially inhibited, underlying the possibility that also Mb(III)-NO is able to catalyze the peroxynitrite isomerization, though with a reduced rate (Pkon* = (2.8 ± 0.3) × 103 M-1 s-1). These data expand the multiple roles of ·NO in modulating heme-protein actions, envisaging a delicate balancing between peroxynitrite and ·NO, which is modulated through the relative amount of Mb(III) and Mb(III)-NO.


Assuntos
Compostos Férricos/química , Sequestradores de Radicais Livres/química , Mioglobina/química , Nitrocompostos/química , Ácido Peroxinitroso/química , Animais , Catálise , Masculino , Estrutura Molecular , Baleias
10.
ChemMedChem ; 15(3): 302-316, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31797568

RESUMO

Proteasome malfunction parallels abnormal amyloid accumulation in Alzheimer's Disease (AD). Here we scrutinize a small library of pyrazolones by assaying their ability to enhance proteasome activity and protect neuronal cells from amyloid toxicity. Tube tests evidenced that aminopyrine and nifenazone behave as 20S proteasome activators. Enzyme assays carried out on an "open gate" mutant (α3ΔN) proteasome demonstrated that aminopyrine activates proteasome through binding the α-ring surfaces and influencing gating dynamics. Docking studies coupled with STD-NMR experiments showed that H-bonds and π-π stacking interactions between pyrazolones and the enzyme play a key role in bridging α1 to α2 and, alternatively, α5 to α6 subunits of the outer α-ring. Aminopyrine and nifenazone exhibit neurotrophic properties and protect differentiated human neuroblastoma SH-SY5Y cells from ß-amyloid (Aß) toxicity. ESI-MS studies confirmed that aminopyrine enhances Aß degradation by proteasome in a dose-dependent manner. Our results suggest that some pyrazolones and, in particular, aminopyrine are promising compounds for the development of proteasome activators for AD treatment.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Complexo de Endopeptidases do Proteassoma/metabolismo , Pirazolonas/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Complexo de Endopeptidases do Proteassoma/genética , Pirazolonas/química , Relação Estrutura-Atividade
11.
Chemotherapy ; 64(2): 62-80, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31387102

RESUMO

BACKGROUND: Immune checkpoints are critical regulatory pathways of the immune system which finely tune the response to biological threats. Among them, the CD-28/CTLA-4 and PD-1/PD-L1 axes play a key role in tumour immune escape and are well-established targets of cancer immunotherapy. SUMMARY: The clinical experience accumulated to date provides unequivocal evidence that anti-CTLA-4, PD-1, or PD-L1 monoclonal antibodies, used as monotherapy or in combination regimes, are effective in a variety of advanced/metastatic types of cancer, with improved clinical outcomes compared to conventional chemotherapy. However, the therapeutic success is currently restricted to a limited subset of patients and reliable predictive biomarkers are still lacking. Key Message: The identification and characterization of additional co-inhibitory pathways as novel pharmacological targets to improve the clinical response in refractory patients has led to the development of different immune checkpoint inhibitors, the activities of which are currently under investigation. In this review, we discuss recent literature data concerning the mechanisms of action of next-generation monoclonal antibodies targeting LAG-3, TIM-3, and TIGIT co-inhibitory molecules that are being explored in clinical trials, as single agents or in combination with other immune-stimulating agents.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Neoplasias/tratamento farmacológico , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígeno CTLA-4/imunologia , Antígeno CTLA-4/metabolismo , Ensaios Clínicos como Assunto , Receptor Celular 2 do Vírus da Hepatite A/imunologia , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Humanos , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Microambiente Tumoral , Proteína do Gene 3 de Ativação de Linfócitos
13.
Trends Biochem Sci ; 43(11): 852-853, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30145017

RESUMO

A recently published paper applies cryo-electron microscopy (EM) studies and biochemical/genetic approaches for the elucidation of the mechanisms linking nucleotide binding by ATPases, proteasome conformation dynamics, and gate opening of the 20S core particle. These insights potentially represent a milestone in our understanding of the structural dynamics of the 26S proteasome.


Assuntos
Microscopia Crioeletrônica , Complexo de Endopeptidases do Proteassoma , Adenosina Trifosfatases , Conformação Molecular
14.
Cell Mol Life Sci ; 75(18): 3441-3456, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29594388

RESUMO

The interaction of insulin-degrading enzyme (IDE) with the main intracellular proteasome assemblies (i.e, 30S, 26S and 20S) was analyzed by enzymatic activity, mass spectrometry and native gel electrophoresis. IDE was mainly detected in association with assemblies with at least one free 20S end and biochemical investigations suggest that IDE competes with the 19S in vitro. IDE directly binds the 20S and affects its proteolytic activities in a bimodal fashion, very similar in human and yeast 20S, inhibiting at (IDE) ≤ 30 nM and activating at (IDE) ≥ 30 nM. Only an activating effect is observed in a yeast mutant locked in the "open" conformation (i.e., the α-3ΔN 20S), envisaging a possible role of IDE as modulator of the 20S "open"-"closed" allosteric equilibrium. Protein-protein docking in silico proposes that the interaction between IDE and the 20S could involve the C-term helix of the 20S α-3 subunit which regulates the gate opening of the 20S.


Assuntos
Insulisina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Regulação Alostérica , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Células HEK293 , Humanos , Insulisina/química , Cinética , Simulação de Acoplamento Molecular , Eletroforese em Gel de Poliacrilamida Nativa , Complexo de Endopeptidases do Proteassoma/química , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Espectrometria de Massas em Tandem , Leveduras/metabolismo
15.
Sci Rep ; 7(1): 17098, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29213119

RESUMO

The importance of allosteric proteasome inhibition in the treatment of cancer is becoming increasingly evident. Motivated by this urgent therapeutic need, we have recently identified cationic porphyrins as a highly versatile class of molecules able to regulate proteasome activity by interfering with gating mechanisms. In the present study, the mapping of electrostatic contacts bridging the regulatory particles with the α-rings of the human 20S proteasome led us to the identification of (meso-tetrakis(4-N-methylphenyl pyridyl)-porphyrin (pTMPyPP4) as a novel non-competitive inhibitor of human 20S proteasome. pTMPyPP4 inhibition mechanism implies a positive cooperative binding to proteasome, which disappears when a permanently open proteasome mutant (α-3ΔN) is used, supporting the hypothesis that the events associated with allosteric proteasome inhibition by pTMPyPP4 interfere with 20S gating and affect its "open-closed" equilibrium. Therefore, we propose that the spatial distribution of the negatively charged residues responsible for the interaction with regulatory particles at the α-ring surface of human 20S may be exploited as a blueprint for the design of allosteric proteasome regulators.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Porfirinas/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Sítios de Ligação , Microscopia Crioeletrônica , Humanos , Cinética , Simulação de Acoplamento Molecular , Mutagênese , Porfirinas/química , Porfirinas/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/genética , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Eletricidade Estática
16.
Crit Rev Biochem Mol Biol ; 52(5): 554-582, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28635330

RESUMO

Insulin-degrading enzyme (IDE) is a ubiquitous zinc peptidase of the inverzincin family, which has been initially discovered as the enzyme responsible for insulin catabolism; therefore, its involvement in the onset of diabetes has been largely investigated. However, further studies on IDE unraveled its ability to degrade several other polypeptides, such as ß-amyloid, amylin, and glucagon, envisaging the possible implication of IDE dys-regulation in the "aggregopathies" and, in particular, in neurodegenerative diseases. Over the last decade, a novel scenario on IDE biology has emerged, pointing out a multi-functional role of this enzyme in several basic cellular processes. In particular, latest advances indicate that IDE behaves as a heat shock protein and modulates the ubiquitin-proteasome system, suggesting a major implication in proteins turnover and cell homeostasis. In addition, recent observations have highlighted that the regulation of glucose metabolism by IDE is not merely based on its largely proposed role in the degradation of insulin in vivo. There is increasing evidence that improper IDE function, regulation, or trafficking might contribute to the etiology of metabolic diseases. In addition, the enzymatic activity of IDE is affected by metals levels, thus suggesting a role also in the metal homeostasis (metallostasis), which is thought to be tightly linked to the malfunction of the "quality control" machinery of the cell. Focusing on the physiological role of IDE, we will address a comprehensive vision of the very complex scenario in which IDE takes part, outlining its crucial role in interconnecting several relevant cellular processes.


Assuntos
Insulisina/metabolismo , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Animais , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/patologia , Humanos , Insulisina/fisiologia , Agregação Patológica de Proteínas/enzimologia , Agregação Patológica de Proteínas/patologia , Conformação Proteica
17.
FEBS J ; 283(20): 3755-3770, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27579517

RESUMO

Somatostatin is a cyclic peptide, released in the gastrointestinal system and the central nervous system, where it is involved in the regulation of cognitive and sensory functions, motor activity and sleep. It is a substrate of insulin-degrading enzyme (IDE), as well as a modulator of its activity and expression. In the present study, we have investigated the modulatory role of somatostatin on IDE activity at 37 °C and pH 7.3 for various substrates [i.e. insulin, ß-amyloid (Aß)1-40 and bradykinin], aiming to quantitatively characterize the correlation between the specific features of the substrates and the regulatory mechanism. Functional data indicate that somatostatin, in addition to the catalytic site of IDE (being a substrate), is also able to bind to two additional exosites, which play different roles according to the size of the substrate and its binding mode to the IDE catalytic cleft. In particular, one exosite, which displays high affinity for somatostatin, regulates only the interaction of IDE with larger substrates (such as insulin and Aß1-40 ) in a differing fashion according to their various modes of binding to the enzyme. A second exosite, which is involved in the regulation of enzymatic processing by IDE of all substrates investigated (including a 10-25 amino acid long amyloid-like peptide, bradykinin and somatostatin itself, which had been studied previously), probably acts through the alteration of an 'open-closed' equilibrium.


Assuntos
Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Insulisina/química , Insulisina/metabolismo , Somatostatina/metabolismo , Sítio Alostérico , Peptídeos beta-Amiloides/metabolismo , Animais , Bradicinina/metabolismo , Proteínas de Insetos/genética , Insulina/metabolismo , Insulisina/genética , Cinética , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Spodoptera/enzimologia , Spodoptera/genética , Especificidade por Substrato
18.
Chem Sci ; 7(2): 1286-1297, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29910886

RESUMO

The 20S proteasome is a barrel-shaped enzymatic assembly playing a critical role in proteome maintenance. Access of proteasome substrates to the catalytic chamber is finely regulated through gating mechanisms which involve aromatic and negatively charged residues located at the N-terminal tails of α subunits. However, despite the importance of gates in regulating proteasome function, up to now very few molecules have been shown to interfere with the equilibrium by which the catalytic channel exchanges between the open and closed states. In this light, and inspired by previous results evidencing the antiproteasome potential of cationic porphyrins, here we combine experimental (enzyme kinetics, UV stopped flow and NMR) and computational (bioinformatic analysis and docking studies) approaches to inspect proteasome inhibition by meso-tetrakis(4-N-methylpyridyl)-porphyrin (H2T4) and its two ortho- and meta-isomers. We show that in a first, fast binding event H2T4 accommodates in a pocket made of negatively charged and aromatic residues present in α1 (Asp10, Phe9), α3 (Tyr5), α5 (Asp9, Tyr8), α6 (Asp7, Tyr6) and α7 (Asp9, Tyr8) subunits thereby stabilizing the closed conformation. A second, slower binding mode involves interaction with the grooves which separate the α- from the ß-rings. Of note, the proteasome inhibition by ortho- and meta-H2T4 decreases significantly if compared to the parent compound, thus underscoring the role played by spatial distribution of the four peripheral positive charges in regulating proteasome-ligand interactions. We think that our results may pave the way to further studies aimed at rationalizing the molecular basis of novel, and more sophisticated, proteasome regulatory mechanisms.

19.
PLoS One ; 10(5): e0125005, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25993270

RESUMO

The single-cell green alga Chlamydomonas reinhardtii harbors twelve truncated hemoglobins (Cr-TrHbs). Cr-TrHb1-1 and Cr-TrHb1-8 have been postulated to be parts of the nitrogen assimilation pathway, and of a NO-dependent signaling pathway, respectively. Here, spectroscopic and reactivity properties of Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4, all belonging to clsss 1 (previously known as group N or group I), are reported. The ferric form of Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 displays a stable 6cLS heme-Fe atom, whereas the hexa-coordination of the ferrous derivative appears less strongly stabilized. Accordingly, kinetics of azide binding to ferric Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 are independent of the ligand concentration. Conversely, kinetics of CO or NO2- binding to ferrous Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 are ligand-dependent at low CO or NO2- concentrations, tending to level off at high ligand concentrations, suggesting the presence of a rate-limiting step. In agreement with the different heme-Fe environments, the pH-dependent kinetics for CO and NO2-binding to ferrous Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 are characterized by different ligand-linked protonation events. This raises the question of whether the simultaneous presence in C. reinhardtii of multiple TrHb1s may be related to different regulatory roles.


Assuntos
Chlamydomonas reinhardtii/genética , Modelos Moleculares , Hemoglobinas Truncadas/química , Hemoglobinas Truncadas/metabolismo , Azidas/metabolismo , Sequência de Bases , Chlamydomonas reinhardtii/metabolismo , Primers do DNA/genética , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Cinética , Dados de Sequência Molecular , Conformação Proteica , Análise de Sequência de DNA , Espectrofotometria , Hemoglobinas Truncadas/classificação
20.
J Biol Inorg Chem ; 20(1): 101-108, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25450414

RESUMO

The properties of three novel Platinum(II) compounds toward the insulin-degrading enzyme (IDE) enzymatic activity have been investigated under physiological conditions. The rationale of this study resides on previous observations that these compounds, specifically designed and synthesized by some of us, induce apoptosis in various cancer cell lines, whereas IDE has been proposed as a putative oncogene involved in neuroblastoma onset and progression. Two of these compounds, namely [PtCl(O,O'-acac)(DMSO)] and [Pt(O,O'-acac)(γ-acac)(DMS)], display a modulatory behavior, wherefore activation or inhibition of IDE activity occurs over different concentration ranges (suggesting the existence of two binding sites on the enzyme). On the other hand, [Pt(O,O'-acac)(γ-acac)(DMSO)] shows a typical competitive inhibitory pattern, characterized by a meaningful affinity constant (K i  = 0.95 ± 0.21 µM). Although all three compounds induce cell death in neuroblastoma SHSY5Y cells at concentrations exceeding 2 µM, the two modulators facilitate cells' proliferation at concentrations ≤ 1.5 µM, whereas the competitive inhibitor [Pt(O,O'-acac)(γ-acac)(DMSO)] only shows a pro-apoptotic activity at all investigated concentrations. These features render the [Pt(O,O'-acac)(γ-acac)(DMSO)] a promising "lead compound" for the synthesis of IDE-specific inhibitors (not characterized yet) with therapeutic potentiality.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Insulisina/química , Compostos Organoplatínicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Insulisina/antagonistas & inibidores , Cinética , Neuroblastoma/tratamento farmacológico , Compostos Organoplatínicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...